
www.buffalo.edu

• Index update is a time consuming process as index structures need to
be updated and reorganized every time the database changes.

• Adaptive indexing is a form of incremental index organization in which
index creation happens as a side effect of query execution.

• Advantage: Incremental indexing puts a little penalty on the initial few
queries but queries eventually get answered faster than a full static
index evaluation.

• Disadvantage: An adaptive index structure like a sorted array or a B-
Tree or adaptive indexing strategies like cracking, adaptive merge that is
initially optimal for one workload becomes sub-optimal as the workload’s
characteristic changes.

Just In Time Datastructures

Background: Adaptive indexing

Just-In-Time Datastructures

Conclusions

• JITDs decouple the logic and physical representation of an index data
structure, and allow multiple behaviors, or policies to collectively
manipulate a standardized library of physical layout building blocks, or
cogs.

• The simulator model predicts the behavior of the JITD with a very
minimal difference between the projected runtimes and calculated
runtimes.

• The simulator model will help predict the intermediate state of a
datastructure in transition.

• Simulation + Cost-Analysis can be used to derive policies to drive direct
rewrites.

Simulator Model

References

A Scalable Approach to Incremental Data Organization

Just-In-Time Data Structures is a generalized approach to adaptive indexing
that dynamically adapts to changing workloads even after index convergence. It
is possible to simulate the behavior of the Just-In-Time data Structure so as to
predict appropriate data structure and heuristics for index creation also making
the structure optimal for any change in workloads.
Just-in-time data structures:
• Driven by abstraction between the physical representation and logic that

accesses and manipulates that physical representation.
• Cogs(Abstraction layer): Collection of nodes in the data structure

irrespective of their type. JITDs composed of interchangeable cogs that are
consistent in the data they store but need not be consistent in the structure
of the nodes.

• Policies: In place transformations that restructure the JITD are interleaved
with the actual query execution making the JITD an iterative and
incremental model rather than a static indexed structure.

1. S. Idreos, M. L. Kersten, and S. Manegold. Database cracking. In CIDR,
2007.
2. O.kennedy, L.Ziarek. Just In Time Datastructures. In CIDR, 2015.

Oliver Kennedy
okennedy@buffalo.edu

SUNY Buffalo

Lukaz Ziarek
lziarek@buffalo.edu

SUNY Buffalo

Darshana Balakrishnan
dbalakri@buffalo.edu

SUNY Buffalo

Saurav Singhi
sauravsi@buffalo.edu

SUNY Buffalo

• Motivation: Execution of the JITDs on a workload to predict the best data
structure and transformations that maximize the throughput and other
relevant value functions is a very expensive process .

• Simulation using cost Model: For the purpose of estimation we defined a
cost model that relates the different factors that contribute to the latency of
the system. Each policy was broken down into a set of operations and cost
of each operation was mathematically realized.

• Individual Costs measured for the following operations:

• Using the measured values we can calculate time taken for each operation.
Total Time taken by the JITD is the sum of the time taken by the different
operations dictated by the policy in place
• Calculated time to Crack an Unsorted Array of size n = ⍬ * n.
• Calculated time to Sort an Unsorted Array of size n = Ω * nlog(n).
• Calculated time to Scan Unsorted Array of size n = µ * n.
• Calculated time to Scan Sorted Array of size n = ⍺ * log(n).

Different types of cogs

Example of JITD

Operation on an array of size n Time taken(ns)
Scan Unsorted Array (µ) 31.03
Scan Sorted Array (⍺) 104.59
Crack an Unsorted Array (⍬) 48.42
Crack an Unsorted Array (Ω) 21.55

