Functional Data Structures

Sept 1, 2017
(Multiple diagrams from 'Purely Functional Datastructures' by Chris Okasaki)

Mutable vs Immutable

$$
\mathrm{X}=[\text { Alice, Bob, Carol, Dave] }
$$

Alice	Bob	Eve	Dave

$$
\begin{aligned}
& \mathrm{X}[2] \rightarrow \text { Carol } \\
& \mathrm{X}[2]:=\text { Eve }
\end{aligned}
$$

Mutable vs Immutable

$$
\mathrm{X}=[\text { Alice, Bob, Carol, Dave] }
$$

Alice Bob Carol Dave

Thread 1
x[2] := Eve

Thread 2
X[2]

Mutable Datastructures

- The programmer's intended ordering is unclear
- Atomicity/Correctness requires locking
- Versioning requires copying the data structure
- Cache coherency is expensive!

Can these problems be avoided?

Immutable Data Structures

$$
\mathrm{X}=[\text { Alice, Bob, Carol, Dave] }
$$

Alice Bob Carol Dave

But what if we need to update the structure?

Immutable Data Structures

Key Insight: Immutable components can be re-used!

Immutable Data Structures

Key Insight: Immutable components can be re-used!

Immutable Data Structures

Semantics are clearer: Exactly one 'version' at any time

Immutable Data Structures

Data is added, not replaced: No cache coherency problems

Immutable Data Structures
 (a.k.a. 'Functional' or 'Persistent' Data Structures)

- Once an object is created, it never changes.
- When all pointers to an object go away, the object is garbage collected.
- Only the 'root' pointer can ever change (to point to a new version of the data structure)

Linked Lists

$$
\begin{gathered}
\mathrm{xs}=\operatorname{pop}(\mathrm{xs}) \\
x s \rightarrow 1 \square \Rightarrow \cdot \square
\end{gathered}
$$

$$
\begin{gathered}
y s=\operatorname{push}(y s, 1) \\
y s \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \cdot
\end{gathered}
$$

Only xs and ys need to change

Linked Lists

This entire part needs to be rewritten

Linked Lists

Class Exercise 1

How would you implement update(list, index, value)

Class Exercise 2

Implement a set with:

set init()
boolean member(set, elem) set insert(set, elem)

Lazy Evaluation

Can we do better?

Putting Off Work

x = "expensive()"
print x
print x

Fast
(just saving a 'todo')
Slow
(performing the 'todo')
Fast
('todo' already done)

Class Exercise 3

Make it better!

Putting Off Work

concatenate (a, b) \{
a^{\prime}, front $=p o p(a)$
if a' is empty
return (front, b)
else
return (front, "concatenate(a', b)")
\}
What is the time complexity of concatenate?
What happens to reads?

Lazy Evaluation

- Save work for later...
- ... and avoid work that is never required.
- ... to spread work out over multiple calls.
- ... for better ‘amortized’ costs.

Amortized Analysis

- Allow operation A to 'pay it forward' for another operation B that hasn't happened yet
- A's time complexity goes up by X.
- B's time complexity goes down by X .

Example: Amortized Queues

Preliminaries: Implement an efficient enqueue()/dequeue()

Example: Amortized Queues

enqueue(): Push onto 'todo' stack What is the cost?

dequeue(): Pop ‘current' queue
if empty, reverse 'todo' stack to make new 'current' queue What is the cost?

Example: Amortized Queues

enqueue(): Push onto 'todo' stack push() is $\mathbf{O (1) + 1} \mathbf{~ c r e d i t ~}$ dequeue(): Pop 'current' queue if empty, reverse 'todo' stack to make new 'current' queue Pop is $\mathbf{O (1) ; ~ R e v e r s e ~ u s e s ~} \mathbf{N}$ credits for $\mathbf{O (1)}$ amortized

