
Just-in-Time
Data Structures

Languages and Runtimes for Big Data

Updates

• Slack Channel

• #cse662-fall2017 @ http://ubodin.slack.com

• Reading for Monday: MCDB

• Exactly one piece of feedback (see next slide)

http://ubodin.slack.com

Don’t parrot the paper back
• Find something that the paper says is good and

figure out a set of circumstances where it's bad.

• What else does something similar, why is the
paper better, and under what circumstances?

• Think of circumstances and real-world settings
where the proposed system is good.

• Evaluation: How would you evaluate their solution
in a way that they didn’t.

What is best in life?
(for organizing your data)

Storing & Organizing Data

1 2 3 4 5

Binary Tree

Which should you use?

Sorted Array

1 2 3 4 5

Heap

5 1 2 4 3
API

Insert
Range Scan

… and many more.

You guessed wrong.
(Unless you didn’t)

Workloads

Read Cost

W
rit

e
C

os
t

Sorted Array

BTree

Heap

Each data structure makes a fixed set of tradeoffsWhich structure is best can even change at runtime

Workloads

Read Cost

W
rit

e
C

os
t

Sorted Array

BTree

Heap

Many Reads

Some Writes

Many Reads

No Reads

Current Workload

We want to gracefully transition between different DSes

Traditional

Physical Layout & Logic

Manipulation Logic Access Logic

Data Structures

Physical Layout & Logic

Manipulation Logic Access Logic

Abstraction Layer

Data StructuresJust-in-Time

➡ Picking The Right Abstraction

 Accessing and Manipulating a JITD

 Case Study: Adaptive Indexes

 Experimental Results

 Demo

Abstractions

Black Box

(A set of integer records)

My Data

Insertions
Let’s say I want to add a 3?

Black Box

U

This is correct, but probably not efficient

3

My Data

Insertions

U

Insertion creates a temporary representation…

1 2 4 5 31 2 4 5 3

Insertions

U

31 2 4 5

1 2 4 53

… that we can
eventually rewrite into
a form that is correct

and efficient

(once we know what
‘efficient’ means)

Binary Tree

Traditional Data Structure Design

1 2 3 4 5

Leaf Nodes
(Maybe In a Linked List)

Inner Nodes

<

Traditional Data Structure Design

Binary Tree

Sorted Array

1 2 3 4 5

Heap

5 1 2 4 3

Contiguous Array
of Records

Building Blocks

1 2 4 53

1 24 5 3U

<

BinTree Node

Concatenate

Array (Sorted)

Array (Unsorted)

Structural Properties

Semantic Properties

 Picking The Right Abstraction

➡ Accessing and Manipulating a JITD

 Case Study: Adaptive Indexes

 Experimental Results

 Demo

Binary Tree Insertions
Let’s try something more complex: A Binary Tree

U

<

< <

… … … …

U

3
<

< <

… … … …

U

3
<

<<

… …… …

Binary Tree Insertions

U

3

<

<

<

… …

… …

A rewrite pushes the inserted object down into the tree

Black
Box 2

Black
Box 2

Black
Box 1

Binary Tree Insertions

U

< U

<

Black
Box 1

The rewrites are local.
The rest of the data structure doesn’t matter!

Binary Tree Insertions
Terminate recursion at the leaves

U

3

<

5 53

Range Scan(low, high)

1 2 4 53

1 24 5 3

U

A B

[Recur into A]
 UNION [Recur into B]

<

A B

IF(sep > high) { [Recur into A] }
ELSIF(sep ≤ low) { [Recur into B] }
ELSE { [Recur into A]
 UNION [Recur into B] }

Full Scan

2x Binary Search

Synergy

Hybrid Insertions

<

1 2 4 5

U

3

Hybrid Insertions

<

1 2 4 5

U

3 1 2

4 5

U

3

<

BinTree
Rewrite

Hybrid Insertions

<

1 2 4 5

U

3 1 2

4 5

U

3

<

Binary Tree
Rewrite

Sorted Array
Rewrite

1 2

<

3 4 5

Synergy

<

1 2 4 5

U

3 1 2

4 5

U

3

<

Binary Tree
Rewrite

Binary Tree Leaf
Rewrite

1 2

<

3 4 5

<

Which rewrite gets used depends on workload-specific policies.

 Picking The Right Abstraction

 Accessing and Manipulating a JITD

➡ Case Study: Adaptive Indexes

 Experimental Results

 Demo

Adaptive Indexes
Your Index Your Workload

Adaptive Indexes
←

 T
im

e

Your Index Your Workload

Adaptive Indexes
←

 T
im

e

Your Index Your Workload

Range-Scan Adaptive Indexes
 Start with an Unsorted List of Records

 Converge to a Binary Tree or Sorted Array

• Cracker Index

• Converge by emulating quick-sort

• Adaptive Merge Trees

• Converge by emulating merge-sort

5

Cracker Indexes

1 243Read [2,4)

Cracker Indexes

Read [2,4)

1 2 453

1 24 53

[2,4) [4,∞)[-∞,2)

Read [1,3)

Answer

Radix Partition on Query Boundaries (Don’t Sort)

1 2 453

Cracker Indexes

Read [2,4)

1 2 453

1 24 53

[2,3) [4,∞)[1,2)

Read [1,3)

[3,4)

Answer

Each query does less and less work

Rewrite-Based Cracking

51 243Read [2,4)

Rewrite-Based Cracking

1 2 453

In-Place Sort as Before

Rewrite-Based Cracking

1

2 453

<2

<4

Fragment and Organize

Rewrite-Based Cracking

1

2

45

3

<2

<4

<3

Continue fragmenting as queries arrive.
(Can use Splay Tree For Balance)

Adaptive Merge Trees

51 24 3

Before the first query, partition data…

Adaptive Merge Trees

51 243

…and build fixed-size sorted runs

Adaptive Merge Trees

51

2

43

Merge only relevant records into target array

Read [2,4)

Adaptive Merge Trees

51

2

4

3

Merge only relevant records into target array

Read [2,4)

Adaptive Merge Trees

5

1 2

4

3

Continue merging as new queries arrive

Read [1,3)

Rewrite-Based Merging

51 24 3

Adaptive Merge Trees

51 243

Rewrite any unsorted array into a union of sorted runs

U

Adaptive Merge Trees

5

1 2 43

Method 1: Merge Relevant Records into LHS Run
(Sub-Partition LHS Runs to Keep Merges Fast)

Read [2,4)

U

<3

Adaptive Merge Trees

51 243

or…

U

Adaptive Merge Trees

51 2 43

Method 2: Partition Records into High/Mid/Low
(Union Back High & Low Records)

Read [2,4)
<2

<4

U

Synergy
• Cracking creates smaller unsorted arrays, so fewer

runs are needed for adaptive merge

• Sorted arrays don’t need to be cracked!

• Insertions naturally transformed into sorted runs.

• (not shown) Partial crack transform pushes newly
inserted arrays down through merge tree.

 Picking The Right Abstraction

 Accessing and Manipulating a JITD

 Case Study: Adaptive Indexes

➡ Experimental Results

 Demo

Experiments
Cracker Index

Adaptive Merge Tree

vs

vs

JITDs

API
• RangeScan(low, high)
• Insert(Array)

Gimmick
• Insert is Free.
• RangeScan uses work

done to answer the query
to also organize the data.

Experiments

vs

vs

JITDs

Less organization
per-read

More organization
per-read

Cracker Index

Adaptive Merge Tree

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ti
m

e
(s

)

Iteration

Reads

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ti
m

e
(s

)

Iteration

Reads

Cracker Index

Adaptive Merge Tree

100 M records
(1.6 GB)

10,000 reads for
2-3 k records

each

10M additional
records written

after 5,000 reads

Bimodal
Distribution

Super-High
Initial Costs

33s
(not shown)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ti
m

e
(s

)

Iteration

Reads

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ti
m

e
(s

)

Iteration

Reads

Cracker Index

Adaptive Merge Tree

Slow
Convergence

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ti
m

e
(s

)

Iteration

Reads

Policy 1: Swap (Crack for 2k reads after write, then merge)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ti
m

e
(s

)

Iteration

Reads

Policy 1: Swap (Crack for 2k reads after write, then merge)

Switchover from Crack to Merge

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ti
m

e
(s

)

Iteration

Reads

Synergy from Cracking (lower upfront cost)

Policy 1: Swap (Crack for 2k reads after write, then merge)

Policy 2: Transition (Gradient from Crack to Merge at 1k)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ti
m

e
(s

)

Iteration

Reads

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ti
m

e
(s

)

Iteration

Reads

Gradient Period (% chance of Crack or Merge)

Policy 2: Transition (Gradient from Crack to Merge at 1k)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ti
m

e
(s

)

Iteration

Reads

Tri-modal distribution: Cracking and Merging
on a per-operation basis

Policy 2: Transition (Gradient from Crack to Merge at 1k)

Overall Throughput

 1

 10

 100

 1000

 10000

 0 2000 4000 6000 8000 10000

Th
ro

ug
hp

ut
 (o

ps
/s)

Iteration

Cracking
Merge

Swap
Transition

JITDs allow fine-grained control over DS behavior

Just-in-Time Data Structures
• Separate logic and structure/semantics

• Composable Building Blocks

• Local Rewrite Rules

• Result: Flexible, hybrid data structures.

• Result: Graceful transitions between different behaviors.

• https://github.com/UBOdin/jitd

Questions?

https://github.com/UBOdin/jitd

