Motivation

- Examples
 - 4 <-> 9
 - Sensor Example
 - NYC Taxi Cabs -> Hurricane Sandy vs \$100 tip vs Dropoff in Brazil
- Core problem: There is no longer one interpretation of the data
 - Current state of the art:
 - Design a schema to account for uncertainty
 - Problem: Now users need to be explicitly aware of uncertainty
 - Problem: Slow, upfront work
 - Settle on one interpretation that works for your use case
 - Problem: If the interpretation you pick is wrong, you get errors
 - Problem: The data could be wrong if used for a different use case
 - Problem: Slow, upfront work
 - NULL values
 - Problem: Hides uncertain values
 - Problem: Null value semantics are aweful
 - Any arithmetic with a null value (e.g., NULL + 1) evaluates to NULL
 - Any comparison with null values (e.g., NULL >= 3) evaluates to UNKNOWN
 - 3-Valued Boolean Logic: TRUE, UNKNOWN, FALSE
 - SQL WHERE returns only TRUE values (UNKNOWN and FALSE are dropped)
 - Problem: It's possible for SELECT * FROM R WHERE (X > 3) AND (X <= 3) to return an empty result on a non-empty R
 - Improved Solution: API for Uncertain/Probabilistic Queries
 - Query for 'certain' answers
 - Problem: Uncertain answers may still be useful
 - Query for the best interpretation
 - Problem: How do you define "best"?
 - Query for all possible interpretations
 - Problem: Hides correlations/anticorrelations
 - Probabilistic queries as above, but also compute...
 - ... marginal probabilities of answers
 - ... expectations/variances/other statistical measures of answers
 - ... rank of each possible answer (when this makes sense)
- Possible Worlds Semantics
 - Each interpretation defines one world
 - ▼

•

- An uncertain database is actually a set of databases, each representing one interpretation or "possible world"
 - For now, all of these databases share the same schema.
- How do we define query semantics for a set of possible worlds:
 - Queries should return a set of "possible answers"
 - Naive idea: Run the query independently in each possible world
 - Problem: Inefficient. Can be lots of possible worlds.
 - **Problem**: Could be impossible. Can be an infinite number of possible worlds
 - But... This still defines a self-consistent set of rules for evaluating queries on uncertain data

Representation Requirements

- Closed
 - There exists a Q' such that Q'(Rep(D)) == Rep(Q(D))
- Meaningful
 - The representation has to be useful... although for what depends on the application
- ... or better still Bijective
 - Ideally, it would be nice to be able to reconstruct all possible worlds from the representation.
- Factorization attempts
 - Three types of uncorrelated uncertainty:
 - Row-level: A row is present precisely half of all possible worlds --- and other than the row, everything else is identical between the two halves
 - Attribute-level: There are N copies of all worlds where a row is present, differing only in a single attribute which takes N distinct values --- N may be infinity
 - Open-world: There are an infinite number of worlds with an unbounded number of rows in them, and we have rules for generating more rows
- Adding correlations
 - Create an integer "world-id"
 - Define a function that maps the world-id to a concrete database (or relation) instance)
 - ... so how do we define these functions?

V-Tables

 \mathbf{v}

- Null Value Semantics on Steroids
 - · 'Label' each Null. i.e., Nulls become Variables
 - A V-table is effectively a Function:
 - A possible world is defined by a mapping from labels to nulls
 - Externally provided ruleset defines what's allowed to be in a labeled null
- Proving Closure for V-Tables
 - Exercise for the reader
 - Works for π, x, U, but not σ

- - ... because there's no way to represent a row that "might" be in the result set
 - Works under both set and bag semantics
 - ... although the representation may have some duplicate rows that need to be removed

C-Tables

- V-Tables with an additional "Condition" column
 - Each table gets an added column containing a boolean expression that may reference label symbols
 - When evaluating the V-Table as a Function, plug label values into the boolean expression
 - · Boolean expressions that evaluate to false are not present in that specific possible world.
- Proving Closure for C-Tables
 - Also an exercise for the reader
 - Works for π , x, U, σ , δ but not generalized π or γ
 - well, not entirely true. It works if π and ¥ are allowed to create new variable symbols and constrain their values based on the values of other symbols
 - ... which means π and γ effectively have side effects
 - · Works for both bag and set representations, although as before there may be duplicates
- Simplified C-Tables (U-Relations)
 - Remove Support for Labeled Nulls
 - Create one row for each possible value and add to the condition column `AND [label] = [value]`
 - ... only works if you have a finite, discrete set of possible values
 - Worldset-Decompositions
 - Store the U-Relation column-store style.
- Generalized C-Tables
 - Allow the creation of new variable symbols defined by formulas
 - e.g., { X + 2*Y }
 - Closed over SPJUA+Distinct
 - ... although for aggregates/distinct the representation can get very very large

- Weaker Models

- OR-SET encoding
 - Label tuples that are not in at least one possible world with a ? (this alone is generally called Tuple-independent)
 - · Use sets of allowable values instead of attributes
 - Can not capture correlations
- X-Tuples

▼

• Group tuples into sets of mutually exclusive possibilities (can be combined w/ OR-SET)

Queries on C-Tables

- ▼
- Basic query types
 - Certain Answers
 - Answers in *all* possible worlds
 - Possible Answers
 - Answers in *any* possible world
- Limitations
 - Expensive to compute either of these
 - Possible produces too much, while certain produces too little.
- Tradeoff Points
 - Best Guess (Maximal Prior) Pick a (most likely) world and evaluate the query in it
 - Maximal Posterior Use probabilities (discussed next class) to pick result rows exceeding a given threshold probability.
 - · Sampling Pick a set of possible worlds at random and evaluate the query in each of those (more discussed soon)