
4 <-> 9

Sensor Example

NYC Taxi Cabs -> Hurricane Sandy vs $100 tip vs Dropoff in Brazil

Examples

Problem: Now users need to be explicitly aware of uncertainty

Problem: Slow, upfront work

Design a schema to account for uncertainty

Problem: If the interpretation you pick is wrong, you get errors

Problem: The data could be wrong if used for a different use case

Problem: Slow, upfront work

Settle on one interpretation that works for your use case

Problem: Hides uncertain values

Any arithmetic with a null value (e.g., NULL + 1) evaluates to NULL

Any comparison with null values (e.g., NULL >= 3) evaluates to UNKNOWN

3-Valued Boolean Logic: TRUE, UNKNOWN, FALSE

Problem: It's possible for SELECT * FROM R WHERE (X > 3) AND (X <= 3) to return an empty result on a
non-empty R

SQL WHERE returns only TRUE values (UNKNOWN and FALSE are dropped)

Problem: Null value semantics are aweful

NULL values

Current state of the art:

Problem: Uncertain answers may still be useful

Query for 'certain' answers

Problem: How do you define "best"?

Query for the best interpretation

Problem: Hides correlations/anticorrelations

Query for all possible interpretations

... marginal probabilities of answers

... expectations/variances/other statistical measures of answers

... rank of each possible answer (when this makes sense)

Probabilistic queries as above, but also compute...

Improved Solution: API for Uncertain/Probabilistic Queries

Core problem: There is no longer one interpretation of the data

Motivation

Each interpretation defines one world

Possible Worlds Semantics

For now, all of these databases share the same schema.

An uncertain database is actually a set of databases, each representing one interpretation or "possible world"

Queries should return a set of "possible answers"

Problem: Inefficient. Can be lots of possible worlds.

Problem: Could be impossible. Can be an infinite number of possible worlds

But... This still defines a self-consistent set of rules for evaluating queries on uncertain data

Naive idea: Run the query independently in each possible world

How do we define query semantics for a set of possible worlds:

There exists a Q' such that Q'(Rep(D)) == Rep(Q(D))

Closed

The representation has to be useful... although for what depends on the application

Meaningful

Ideally, it would be nice to be able to reconstruct all possible worlds from the representation.

... or better still Bĳective

Representation Requirements

Row-level: A row is present precisely half of all possible worlds --- and other than the row, everything else is
identical between the two halves

Attribute-level: There are N copies of all worlds where a row is present, differing only in a single attribute which
takes N distinct values --- N may be infinity

Open-world: There are an infinite number of worlds with an unbounded number of rows in them, and we have rules
for generating more rows

Three types of uncorrelated uncertainty:

Factorization attempts

Create an integer "world-id"

... so how do we define these functions?

Define a function that maps the world-id to a concrete database (or relation) instance)

Adding correlations

'Label' each Null. i.e., Nulls become Variables

A possible world is defined by a mapping from labels to nulls

A V-table is effectively a Function:

Externally provided ruleset defines what's allowed to be in a labeled null

Null Value Semantics on Steroids

Exercise for the reader

Works for π, x, U, but not σ

Proving Closure for V-Tables

V-Tables

... because there's no way to represent a row that "might" be in the result set

... although the representation may have some duplicate rows that need to be removed

Works under both set and bag semantics

When evaluating the V-Table as a Function, plug label values into the boolean expression

Boolean expressions that evaluate to false are not present in that specific possible world.

Each table gets an added column containing a boolean expression that may reference label symbols

V-Tables with an additional "Condition" column

Also an exercise for the reader

... which means π and Ɣ effectively have side effects

... well, not entirely true. It works if π and Ɣ are allowed to create new variable symbols and constrain their values
based on the values of other symbols

Works for both bag and set representations, although as before there may be duplicates

Works for π, x, U, σ, δ but not generalized π or Ɣ

Proving Closure for C-Tables

Remove Support for Labeled Nulls

... only works if you have a finite, discrete set of possible values

Create one row for each possible value and add to the condition column `AND [label] = [value]`

Store the U-Relation column-store style.

Worldset-Decompositions

Simplified C-Tables (U-Relations)

e.g., { X + 2*Y }

Allow the creation of new variable symbols defined by formulas

... although for aggregates/distinct the representation can get very very very large

Closed over SPJUA+Distinct

Generalized C-Tables

C-Tables

Label tuples that are not in at least one possible world with a ? (this alone is generally called Tuple-independent)

Use sets of allowable values instead of attributes

Can not capture correlations

OR-SET encoding

Group tuples into sets of mutually exclusive possibilities (can be combined w/ OR-SET)

X-Tuples

Weaker Models

Queries on C-Tables

Answers in *all* possible worlds

Certain Answers

Answers in *any* possible world

Possible Answers

Basic query types

Expensive to compute either of these

Possible produces too much, while certain produces too little.

Limitations

Best Guess (Maximal Prior) - Pick a (most likely) world and evaluate the query in it

Maximal Posterior - Use probabilities (discussed next class) to pick result rows exceeding a given threshold
probability.

Sampling - Pick a set of possible worlds at random and evaluate the query in each of those (more discussed soon)

Tradeoff Points

