
CSE 662 - Database Languages & Runtimes

NoDB / RAW
Oct 8, 2017

1

CSE 662 - Database Languages & Runtimes 2

CSE 662 - Database Languages & Runtimes 3

CSE 662 - Database Languages & Runtimes 4

CSE 662 - Database Languages & Runtimes 5

CSE 662 - Database Languages & Runtimes 6

CSE 662 - Database Languages & Runtimes 7

CSE 662 - Database Languages & Runtimes 8

CSE 662 - Database Languages & Runtimes 9

CSE 662 - Database Languages & Runtimes 10

CSE 662 - Database Languages & Runtimes

Why?

• Control over data.

• The database needs the canonical version

• Load times

• Copying data is expensive.

11

CSE 662 - Database Languages & Runtimes

External Tables

• Supported by SQLite, Postgres, Oracle, DB2, …

• Read only access to raw data files

• … but very slow

12

CSE 662 - Database Languages & Runtimes

NoDB / RAW
• Parsing is slow

• … so cut out unnecessary parsing steps.

• … so cache intermediate parsing metadata.

• … so just-in-time compile extraction code.

• Raw formats not optimized for database access.

• … so cache parsed data in the database.
13

CSE 662 - Database Languages & Runtimes

Data Organization
• How do we store data?

• How are records represented on-disk?
(Serialization)

• How are records stored within a page?

• How are pages organized in a file?

• What other metadata do we need?

• Our solutions must also be persisted to disk.
14

CSE 662 - Database Languages & Runtimes

Record (Tuple) Formats

15

L1 L2 L3 L4

Base Address (B) Address B + L1 + L2

CSE 662 - Database Languages & Runtimes

Record (Tuple) Formats

16

4 $ $ $ $

Number of Fields Delimiters

CSE 662 - Database Languages & Runtimes

Record (Tuple) Formats

17

L1 L2 L3 L4 L5

Array of Field Offsets

CSE 662 - Database Languages & Runtimes

Page Formats

18

6

1
2
3
4
5
6
7
8
…
N

01101011...1

1
2
3
4
5
6
7
8
…
N

Bit array of occupied slots
(and size of page)

Data Records

Free Space

Number of records

Packed Unpacked, Bitmap

N

CSE 662 - Database Languages & Runtimes

Page Formats

19

1 2 3 4 …

Pointer to start of free space

R1

R2
R3

Variable Size Records

CSE 662 - Database Languages & Runtimes

Anatomy of a CSV file

20

Year,Make,Model,Description,Price
1997,Ford,E350,"ac, abs, moon",3000.00
1999,Chevy,"Venture ""Extended Edition""","",4900.00
1999,Chevy,"Venture ""Extended Edition, Very Large""",,5000.00
1996,Jeep,Grand Cherokee,"MUST SELL!
air, moon roof, loaded",4799.00

Year Make Model Description Price
1997 Ford E350 ac, abs, moon 3000.00

1999 Chevy Venture "Extended
Edition" 4900.00

1999 Chevy Venture "Extended
Edition, Very Large" 5000.00

1996 Jeep Grand Cherokee MUST SELL!
air, moon roof, loaded 4799.00

CSE 662 - Database Languages & Runtimes

The Filesystem View

21

Year,Make,Model,Description,Price\n1997,Ford,E350,"ac, abs, moon”,
3000.00\n1999,Chevy,"Venture ""Extended Edition”"","",4900.00\n1999,Chevy,"Venture ""Extended
Edition, Very Large”"",,5000.00\n1996,Jeep,Grand Cherokee,"MUST SELL!\nair, moon roof, loaded",
4799.00

CSE 662 - Database Languages & Runtimes

The Filesystem View

22

Year,Make,Model,Description,Price\n1997,Ford,E350,"ac, abs, moon”,
3000.00\n1999,Chevy,"Venture ""Extended Edition”"","",4900.00\n1999,Chevy,"Venture ""Extended
Edition, Very Large”"",,5000.00\n1996,Jeep,Grand Cherokee,"MUST SELL!\nair, moon roof, loaded",
4799.00

CSE 662 - Database Languages & Runtimes

The Filesystem View

23

Year,Make,Model,Description,Price\n1997,Ford,E350,"ac, abs, moon”,
3000.00\n1999,Chevy,"Venture ""Extended Edition”"","",4900.00\n1999,Chevy,"Venture ""Extended
Edition, Very Large”"",,5000.00\n1996,Jeep,Grand Cherokee,"MUST SELL!\nair, moon roof, loaded",
4799.00

CSE 662 - Database Languages & Runtimes

Field Parsing

24

https://sourcemaking.com/design_patterns/state/delphi

CSE 662 - Database Languages & Runtimes

Field Parsing

25

1997,Ford,E350,"ac, abs, moon",3000.00

1999,Chevy,"Venture ""Extended Edition""","",4900.00

1999,Chevy,"Venture ""Extended Edition, Very Large""",,5000.00

1996,Jeep,Grand Cherokee,"MUST SELL!\nair, moon roof, loaded",4799.00

CSE 662 - Database Languages & Runtimes

Field Parsing

26

1997,Ford,E350,"ac, abs, moon",3000.00

1999,Chevy,"Venture ""Extended Edition""","",4900.00

1999,Chevy,"Venture ""Extended Edition, Very Large""",,5000.00

1996,Jeep,Grand Cherokee,"MUST SELL!\nair, moon roof, loaded",4799.00

CSE 662 - Database Languages & Runtimes

Field Parsing

27

1997,Ford,E350,"ac, abs, moon",3000.00

1999,Chevy,"Venture ""Extended Edition""","",4900.00

1999,Chevy,"Venture ""Extended Edition, Very Large""",,5000.00

1996,Jeep,Grand Cherokee,"MUST SELL!\nair, moon roof, loaded",4799.00

CSE 662 - Database Languages & Runtimes

Overview

28

Rows Fields Typed
Data

CSE 662 - Database Languages & Runtimes

Overview

29

Rows Fields Typed
Data

Core Idea: Do this part once only

CSE 662 - Database Languages & Runtimes

Avoiding Re-Splitting

30

L1 L2 L3 L4 L5

1 2 3 4 …

R1

R2
R3

CSE 662 - Database Languages & Runtimes

Avoiding Re-Splitting

31

L1 L2 L3 L4 L5

1 2 3 4 …

R1

R2
R3

CSE 662 - Database Languages & Runtimes

Position Map

32

Idea 1: Index the data

CSE 662 - Database Languages & Runtimes

Position Map

33

Year,Make,Model,Description,Price\n1997,Ford,E350,"ac, abs, moon”,
3000.00\n1999,Chevy,"Venture ""Extended Edition”"","",4900.00\n1999,Chevy,"Venture ""Extended
Edition, Very Large”"",,5000.00\n1996,Jeep,Grand Cherokee,"MUST SELL!\nair, moon roof, loaded",
4799.00

Record 1

CSE 662 - Database Languages & Runtimes

Position Map

34

Year,Make,Model,Description,Price\n1997,Ford,E350,"ac, abs, moon”,
3000.00\n1999,Chevy,"Venture ""Extended Edition”"","",4900.00\n1999,Chevy,"Venture ""Extended
Edition, Very Large”"",,5000.00\n1996,Jeep,Grand Cherokee,"MUST SELL!\nair, moon roof, loaded",
4799.00

Record 1 Record 2 Record 3 Record 4

CSE 662 - Database Languages & Runtimes

Overview

35

Rows Fields Typed
DataFieldsFields Typed
Data

Typed
Data

Typed
Data

Typed
Data

Typed
Data

CSE 662 - Database Languages & Runtimes

Overview

36

Rows Fields
Typed
Data

Fields

Fields

Typed
Data

Typed
Data

Typed
Data

Typed
Data

Typed
Data

CSE 662 - Database Languages & Runtimes

Overview

37

Rows Fields
Typed
Data

Fields

Fields

Typed
Data

Typed
Data

Typed
Data

Typed
Data

Typed
Data

CSE 662 - Database Languages & Runtimes

Position Maps

38

Idea 2: Index Lazily

CSE 662 - Database Languages & Runtimes

Position Map

39

Year,Make,Model,Description,Price\n1997,Ford,E350,"ac, abs, moon”,
3000.00\n1999,Chevy,"Venture ""Extended Edition”"","",4900.00\n1999,Chevy,"Venture ""Extended
Edition, Very Large”"",,5000.00\n1996,Jeep,Grand Cherokee,"MUST SELL!\nair, moon roof, loaded",
4799.00

CSE 662 - Database Languages & Runtimes

Position Map

40

Year,Make,Model,Description,Price\n1997,Ford,E350,"ac, abs, moon”,
3000.00\n1999,Chevy,"Venture ""Extended Edition”"","",4900.00\n1999,Chevy,"Venture ""Extended
Edition, Very Large”"",,5000.00\n1996,Jeep,Grand Cherokee,"MUST SELL!\nair, moon roof, loaded",
4799.00

Record 1 Record 2 Record 3 Record 4

SELECT Make FROM Cars

CSE 662 - Database Languages & Runtimes

Position Map

41

Year,Make,Model,Description,Price\n1997,Ford,E350,"ac, abs, moon”,
3000.00\n1999,Chevy,"Venture ""Extended Edition”"","",4900.00\n1999,Chevy,"Venture ""Extended
Edition, Very Large”"",,5000.00\n1996,Jeep,Grand Cherokee,"MUST SELL!\nair, moon roof, loaded",
4799.00

Record 1 Record 2 Record 3 Record 4

SELECT Year FROM Cars WHERE Make = ‘Chevy’
SELECT Make FROM Cars

CSE 662 - Database Languages & Runtimes

Position Maps

42

Idea 3: Cache “small” parsed values

CSE 662 - Database Languages & Runtimes

Position Map

43

Year,Make,Model,Description,Price\n1997,Ford,E350,"ac, abs, moon”,
3000.00\n1999,Chevy,"Venture ""Extended Edition”"","",4900.00\n1999,Chevy,"Venture ""Extended
Edition, Very Large”"",,5000.00\n1996,Jeep,Grand Cherokee,"MUST SELL!\nair, moon roof, loaded",
4799.00

Record 1 Record 2 Record 3 Record 4

<1997,3000.00> <1999,4900.00> <1999,5000.00> <1996,4799.00>

CSE 662 - Database Languages & Runtimes

Performance

44

NoDBvsAll2Col

0

500

1000

1500

2000

2500

3000

MySQL CSV Engine
 MySQL

DBMS X DBMS X
w/ external files

PostgreSQL PostgresRaw
PM + C

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Q9 Q8
Q7 Q6
Q5 Q4
Q3 Q2
Q1 Load1671sec

~5971sec

656sec

2357sec

831sec
617sec

Figure 7: Comparing the performance of PostgresRaw with other DBMS
vious two epochs. Since PostgresRaw has built a complete cache
of this region, no I/O or parsing is required and the system achieves
optimal performance. In the fourth epoch, queries ask for columns
75�125, i.e. half of the queries hit previously explored areas and
half of the queries hit new regions. PostgresRaw implements a LRU
replacement policy in its cache and drops previously cached data to
accommodate the new requests. During the last epoch, the work-
load again slightly shifts to the region of columns 85� 135. The
effect is that again PostgresRaw needs to replace parts of its cache
while parts of the requested data have to be retrieved from the raw
file by exploiting the positional map.

Overall, we observe that PostgresRaw gracefully adapts to the
changes of the workload. In every epoch, PostgresRaw quickly
adapts, adjusting and populating its cache and the positional maps,
automatically stabilizing to good performance levels. Additionally,
the maintenance of the cache and the positional map do not add
significant overhead to query execution.

5.1.4 PostgresRaw vs other DBMS
In our next experiment we demonstrate the behavior of Postgres-

Raw against state-of-the-art DBMS. We compare MySQL (5.5.13),
DBMS X (a commercial system) and PostgreSQL against Post-
gresRaw with positional maps and caching enabled. MySQL and
DBMS X offer “external files” functionality, which enables direct
querying over raw files as if they were database tables. Therefore,
for MySQL and DBMS X we include two sets of performance re-
sults; (a) using external files functionality, and (b) using previously
loaded data. For queries over loaded data we also report the time
required to load the data; our goal is to show the overall data-to-
query time. For all systems, we boost the bulk loading procedure
by enabling the file system cache (with asynchronous I/O).

For the first experiment, we study the cumulative time needed to
run a sequence of queries with each system. We use a sequence of 9
queries where we also vary selectivity and projectivity. All queries
have one selection predicate in the WHERE clause and then project
and run aggregations on the rest of the attributes. The first query has
100% selectivity and requires all attributes of the raw file. This is
the worst case for PostgresRaw since we have to pay the whole cost
of populating the positional map and the cache up front. The next
4 queries are the same with the difference that they vary selectivity,
decreasing selectivity at steps of 20% at a time. Then, the final 4
queries are again similar to the first query with the difference that
they decrease projectivity at steps of 20% at a time.

Figure 7 shows the results. PostgresRaw achieves the best over-
all performance. It is competitive with DBMS X and MySQL for
this sequence of queries. External files in MySQL (CSV Engine)
and DBMS X are significantly slower than querying over loaded

data or PostgresRaw, since each query repeatedly scans the entire
file. Conventional wisdom indicates that the overhead inherent to
in situ querying is problematic. This is indeed the case for straight-
forward in situ techniques such as external files. Nonetheless, these
results show that the in situ overhead is not a bottleneck if we ap-
ply more advanced techniques that amortize the overhead across a
sequence of queries, allowing for quick access to the data. Com-
pared to PostgreSQL, PostgresRaw shows a significant advantage
(25.75% in this case) even though it uses the same query engine.
PostgreSQL is 53% slower than DBMS X if we take into account
only the query execution time (without the loading costs). Post-
gresRaw, on the other hand, manages to be 6% faster than DBMS
X even though it uses the same engine as PostgreSQL; by avoid-
ing the loading costs, PostgresRaw has already answered the first 4
queries when DBMS X starts processing the first query.

In addition to demonstrating cumulative response times, in the
following experiments we report on individual query response times
as we vary the selectivity and projectivity. We do not include ex-
ternal files in this comparison as the respective response times are
over an order of magnitude slower. For MySQL, DBMS X and
PostgreSQL queries are submitted over previously loaded data but
the loading time is not taken into account here; buffer caches are
cold, however. As in our previous experiment, selectivity and pro-
jectivity is incrementally decreased during the query sequence.

Figure 8(a) shows the results as the selectivity decreases from
100% to 1% with projectivity constant at 100%. Similarly, Fig-
ure 8(b), depicts the performance with constant selectivity (100%)
while projectivity decreases from 100% to 10%. The first query
is similar in both graphs; selectivity is 100% and projectivity is
100%. This is the worst possible query for PostgresRaw; with an
empty map and cache, it forces PostgresRaw to parse and tokenize
the complete raw file. PostgresRaw is merely 2.3 times slower
in the first query than PostgreSQL, but PostgresRaw actually out-
performs PostgreSQL for the remaining queries even though it is
performing in situ data accesses and sharing the same relational
query execution engine. For all systems, as selectivity and projec-
tivity decreases, performance improves as less computation effort
is needed. Moreover, the improvement of PostgresRaw over Post-
greSQL increases since we are bringing only the useful attribute
values in the CPU caches. PostgresRaw improves even more as in
addition to computation costs that have to do with the query com-
ponents, e.g., aggregations, it can also decrease parsing and tok-
enizing costs via selective parsing and tokenizing actions.

Low selectivity and projectivity drastically reduce the query ex-
ecution time in PostgresRaw, making it competitive with state-of-
the-art DBMS without requiring data loading. The positional map
allows us to read only the data required to answer queries, avoiding

248

CSE 662 - Database Languages & Runtimes

JIT-ed Parsers

45

Idea 4: Eliminate Branching

CSE 662 - Database Languages & Runtimes

Branch Prediction

46

https://en.wikipedia.org/wiki/File:Pipeline,_4_stage.svg

https://en.wikipedia.org/wiki/File:Pipeline,_4_stage.svg

CSE 662 - Database Languages & Runtimes

JIT-ed Parsers

47

for every column {
 char *raw // raw data
 Datum *datum // loaded data

 // read field from file
 raw = readNextFieldFromFile(file)

 switch (schemaDataType[column]) {
 case IntType: datum = convertToInteger(raw)
 case FloatType: datum = convertToFloat(raw)
...
}

CSE 662 - Database Languages & Runtimes

JIT-ed Parsers

48

for every column {
 char *raw // raw data
 Datum *datum // loaded data

 // read field from file
 raw = readNextFieldFromFile(file)

 switch (schemaDataType[column]) {
 case IntType: datum = convertToInteger(raw)
 case FloatType: datum = convertToFloat(raw)
...
}

CSE 662 - Database Languages & Runtimes

JIT-ed Parsers

49

for every column {
 char *raw // raw data
 Datum *datum // loaded data

 // read field from file
 raw = readNextFieldFromFile(file)

 switch (schemaDataType[column]) {
 case IntType: datum = convertToInteger(raw)
 case FloatType: datum = convertToFloat(raw)
...
}

CSE 662 - Database Languages & Runtimes

JIT-ed Parsers

50

for every column {
 char *raw // raw data
 Datum *datum // loaded data

 // read field from file
 raw = readNextFieldFromFile(file)

 switch (schemaDataType[column]) {
 case IntType: datum = convertToInteger(raw)
 case FloatType: datum = convertToFloat(raw)
...
}

CSE 662 - Database Languages & Runtimes

JIT-ed Parsers

51

Datum *datum[] // loaded data

datum[0] = convertToInteger(readNextFieldFromFile(file));
datum[1] = convertToString(readNextFieldFromFile(file));
datum[2] = convertToString(readNextFieldFromFile(file));
datum[3] = convertToString(readNextFieldFromFile(file));
datum[4] = convertToFloat(readNextFieldFromFile(file));

No Loop, No Ifs, No branching

CSE 662 - Database Languages & Runtimes

More opportunities

52

L1 L2 L3 L4

Base Address (B) Address B + L1 + L2

CSE 662 - Database Languages & Runtimes

JIT-ed Parsers

53

char *raw // raw data for record
Datum *datum[] // loaded data

datum[0] = convertToInteger(raw[0]);
datum[1] = convertToFloat(raw[4]);
datum[2] = convertToShort(raw[8]);
datum[4] = convertToFloat(raw[10]);

